home *** CD-ROM | disk | FTP | other *** search
Unknown | 1997-04-17 | 3.6 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
1%
| dexvert
| Eclipse Tutorial (other/eclipseTutorial)
| ext
| Unsupported |
1%
| dexvert
| JuggleKrazy Tutorial (other/juggleKrazyTutorial)
| ext
| Unsupported |
100%
| file
| data
| default
| |
100%
| gt2
| Kopftext: 'TUTOR 06c'
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 63 0e 00 00 19 00 00 00 |TUTOR 06|c.......|
|00000010| 47 6c 6f 73 73 61 72 79 | 20 66 6f 72 20 43 68 61 |Glossary| for Cha|
|00000020| 70 74 65 72 20 36 0d 0a | 00 0d 0a 00 0d 0b 00 10 |pter 6..|........|
|00000030| 36 2d 31 2d 31 0e 73 36 | 2d 31 2d 33 0e 41 63 75 |6-1-1.s6|-1-3.Acu|
|00000040| 74 65 20 41 6e 67 6c 65 | 0f 0d 0a 00 10 36 2d 32 |te Angle|.....6-2|
|00000050| 2d 31 0e 73 36 2d 32 2d | 31 0e 41 64 6a 61 63 65 |-1.s6-2-|1.Adjace|
|00000060| 6e 74 20 53 69 64 65 0f | 0d 0a 00 10 36 2d 37 2d |nt Side.|....6-7-|
|00000070| 31 0e 73 36 2d 37 2d 33 | 0e 41 6d 70 6c 69 74 75 |1.s6-7-3|.Amplitu|
|00000080| 64 65 20 6f 66 20 53 69 | 6d 70 6c 65 20 48 61 72 |de of Si|mple Har|
|00000090| 6d 6f 6e 69 63 20 4d 6f | 74 69 6f 6e 0f 0d 0a 00 |monic Mo|tion....|
|000000a0| 10 36 2d 34 2d 31 0e 73 | 36 2d 34 2d 33 0e 41 6d |.6-4-1.s|6-4-3.Am|
|000000b0| 70 6c 69 74 75 64 65 0f | 0d 0a 00 10 36 2d 31 2d |plitude.|....6-1-|
|000000c0| 31 0e 73 36 2d 31 2d 31 | 0e 41 6e 67 6c 65 0f 0d |1.s6-1-1|.Angle..|
|000000d0| 0a 00 10 36 2d 37 2d 31 | 0e 73 36 2d 37 2d 31 0e |...6-7-1|.s6-7-1.|
|000000e0| 41 6e 67 6c 65 20 6f 66 | 20 44 65 70 72 65 73 73 |Angle of| Depress|
|000000f0| 69 6f 6e 0f 0d 0a 00 10 | 36 2d 37 2d 31 0e 73 36 |ion.....|6-7-1.s6|
|00000100| 2d 37 2d 31 0e 41 6e 67 | 6c 65 20 6f 66 20 45 6c |-7-1.Ang|le of El|
|00000110| 65 76 61 74 69 6f 6e 0f | 0d 0a 00 10 36 2d 31 2d |evation.|....6-1-|
|00000120| 31 0e 73 36 2d 31 2d 37 | 0e 41 6e 67 75 6c 61 72 |1.s6-1-7|.Angular|
|00000130| 20 53 70 65 65 64 0f 0d | 0a 00 10 36 2d 37 2d 31 | Speed..|...6-7-1|
|00000140| 0e 73 36 2d 37 2d 32 0e | 42 65 61 72 69 6e 67 73 |.s6-7-2.|Bearings|
|00000150| 0f 0d 0a 00 10 36 2d 32 | 2d 31 0e 73 36 2d 32 2d |.....6-2|-1.s6-2-|
|00000160| 35 0e 43 61 6c 63 75 6c | 61 74 6f 72 73 20 61 6e |5.Calcul|ators an|
|00000170| 64 20 54 72 69 67 6f 6e | 6f 6d 65 74 72 69 63 20 |d Trigon|ometric |
|00000180| 46 75 6e 63 74 69 6f 6e | 73 0f 0d 0a 00 10 36 2d |Function|s.....6-|
|00000190| 34 2d 31 0e 73 36 2d 34 | 2d 36 0e 43 6f 66 75 6e |4-1.s6-4|-6.Cofun|
|000001a0| 63 74 69 6f 6e 20 49 64 | 65 6e 74 69 74 69 65 73 |ction Id|entities|
|000001b0| 20 61 6e 64 20 74 68 65 | 20 47 72 61 70 68 20 6f | and the| Graph o|
|000001c0| 66 20 53 69 6e 65 20 61 | 6e 64 20 43 6f 73 69 6e |f Sine a|nd Cosin|
|000001d0| 65 0f 0d 0a 00 10 36 2d | 32 2d 31 0e 73 36 2d 32 |e.....6-|2-1.s6-2|
|000001e0| 2d 33 0e 43 6f 66 75 6e | 63 74 69 6f 6e 73 20 6f |-3.Cofun|ctions o|
|000001f0| 66 20 43 6f 6d 70 6c 65 | 6d 65 6e 74 61 72 79 20 |f Comple|mentary |
|00000200| 41 6e 67 6c 65 73 0f 0d | 0a 00 10 36 2d 31 2d 31 |Angles..|...6-1-1|
|00000210| 0e 73 36 2d 31 2d 34 0e | 43 6f 6d 70 6c 65 6d 65 |.s6-1-4.|Compleme|
|00000220| 6e 74 61 72 79 20 41 6e | 67 6c 65 73 0f 0d 0a 00 |ntary An|gles....|
|00000230| 10 36 2d 31 2d 31 0e 73 | 36 2d 31 2d 36 0e 43 6f |.6-1-1.s|6-1-6.Co|
|00000240| 6e 76 65 72 73 69 6f 6e | 20 52 75 6c 65 73 20 66 |nversion| Rules f|
|00000250| 6f 72 20 41 6e 67 6c 65 | 20 4d 65 61 73 75 72 65 |or Angle| Measure|
|00000260| 0f 0d 0a 00 10 36 2d 33 | 2d 31 0e 73 36 2d 33 2d |.....6-3|-1.s6-3-|
|00000270| 31 0e 43 6f 73 65 63 61 | 6e 74 20 6f 66 20 41 6e |1.Coseca|nt of An|
|00000280| 79 20 41 6e 67 6c 65 0f | 0d 0a 00 10 36 2d 32 2d |y Angle.|....6-2-|
|00000290| 31 0e 73 36 2d 32 2d 32 | 0e 43 6f 73 65 63 61 6e |1.s6-2-2|.Cosecan|
|000002a0| 74 2c 20 52 69 67 68 74 | 20 54 72 69 61 6e 67 6c |t, Right| Triangl|
|000002b0| 65 20 44 65 66 69 6e 69 | 74 69 6f 6e 20 6f 66 0f |e Defini|tion of.|
|000002c0| 0d 0a 00 10 36 2d 33 2d | 31 0e 73 36 2d 33 2d 31 |....6-3-|1.s6-3-1|
|000002d0| 0e 43 6f 73 69 6e 65 20 | 6f 66 20 41 6e 79 20 41 |.Cosine |of Any A|
|000002e0| 6e 67 6c 65 0f 0d 0a 00 | 10 36 2d 32 2d 31 0e 73 |ngle....|.6-2-1.s|
|000002f0| 36 2d 32 2d 32 0e 43 6f | 73 69 6e 65 2c 20 52 69 |6-2-2.Co|sine, Ri|
|00000300| 67 68 74 20 54 72 69 61 | 6e 67 6c 65 20 44 65 66 |ght Tria|ngle Def|
|00000310| 69 6e 69 74 69 6f 6e 20 | 6f 66 0f 0d 0a 00 10 36 |inition |of.....6|
|00000320| 2d 33 2d 31 0e 73 36 2d | 33 2d 31 0e 43 6f 74 61 |-3-1.s6-|3-1.Cota|
|00000330| 6e 67 65 6e 74 20 6f 66 | 20 41 6e 79 20 41 6e 67 |ngent of| Any Ang|
|00000340| 6c 65 0f 0d 0a 00 10 36 | 2d 32 2d 31 0e 73 36 2d |le.....6|-2-1.s6-|
|00000350| 32 2d 32 0e 43 6f 74 61 | 6e 67 65 6e 74 2c 20 52 |2-2.Cota|ngent, R|
|00000360| 69 67 68 74 20 54 72 69 | 61 6e 67 6c 65 20 44 65 |ight Tri|angle De|
|00000370| 66 69 6e 69 74 69 6f 6e | 20 6f 66 0f 0d 0a 00 10 |finition| of.....|
|00000380| 36 2d 31 2d 31 0e 73 36 | 2d 31 2d 34 0e 43 6f 74 |6-1-1.s6|-1-4.Cot|
|00000390| 65 72 6d 69 6e 61 6c 20 | 41 6e 67 6c 65 73 0f 0d |erminal |Angles..|
|000003a0| 0a 00 10 36 2d 34 2d 31 | 0e 73 36 2d 34 2d 32 0e |...6-4-1|.s6-4-2.|
|000003b0| 43 79 63 6c 65 20 6f 66 | 20 61 20 43 75 72 76 65 |Cycle of| a Curve|
|000003c0| 0f 0d 0a 00 10 36 2d 35 | 2d 31 0e 73 36 2d 35 2d |.....6-5|-1.s6-5-|
|000003d0| 36 0e 44 61 6d 70 65 64 | 20 54 72 69 67 6f 6e 6f |6.Damped| Trigono|
|000003e0| 6d 65 74 72 69 63 20 47 | 72 61 70 68 73 0f 0d 0a |metric G|raphs...|
|000003f0| 00 10 36 2d 35 2d 31 0e | 73 36 2d 35 2d 36 0e 44 |..6-5-1.|s6-5-6.D|
|00000400| 61 6d 70 69 6e 67 20 46 | 61 63 74 6f 72 0f 0d 0a |amping F|actor...|
|00000410| 00 10 36 2d 33 2d 31 0e | 73 36 2d 33 2d 31 0e 44 |..6-3-1.|s6-3-1.D|
|00000420| 65 66 69 6e 69 74 69 6f | 6e 20 6f 66 20 54 72 69 |efinitio|n of Tri|
|00000430| 6f 6e 6f 6d 65 74 72 69 | 63 20 46 75 6e 63 74 69 |onometri|c Functi|
|00000440| 6f 6e 73 20 6f 66 20 41 | 6e 79 20 41 6e 67 6c 65 |ons of A|ny Angle|
|00000450| 0f 0d 0a 00 10 36 2d 31 | 2d 31 0e 73 36 2d 31 2d |.....6-1|-1.s6-1-|
|00000460| 32 0e 44 65 67 72 65 65 | 2d 4d 69 6e 75 74 65 73 |2.Degree|-Minutes|
|00000470| 2d 53 65 63 6f 6e 64 73 | 20 4d 65 61 73 75 72 65 |-Seconds| Measure|
|00000480| 0f 0d 0a 00 10 36 2d 31 | 2d 31 0e 73 36 2d 31 2d |.....6-1|-1.s6-1-|
|00000490| 32 0e 44 65 67 72 65 65 | 0f 0d 0a 00 10 36 2d 31 |2.Degree|.....6-1|
|000004a0| 2d 31 0e 73 36 2d 31 2d | 36 0e 44 65 67 72 65 65 |-1.s6-1-|6.Degree|
|000004b0| 2d 74 6f 2d 52 61 64 69 | 61 6e 20 43 6f 6e 76 65 |-to-Radi|an Conve|
|000004c0| 72 73 69 6f 6e 0f 0d 0a | 00 10 36 2d 33 2d 31 0e |rsion...|..6-3-1.|
|000004d0| 73 36 2d 33 2d 33 0e 45 | 76 61 6c 75 61 74 69 6e |s6-3-3.E|valuatin|
|000004e0| 67 20 54 72 69 67 6f 6e | 6f 6d 65 74 72 69 63 20 |g Trigon|ometric |
|000004f0| 46 75 6e 63 74 69 6f 6e | 73 20 6f 66 20 41 6e 79 |Function|s of Any|
|00000500| 20 41 6e 67 6c 65 0f 0d | 0a 00 10 36 2d 32 2d 31 | Angle..|...6-2-1|
|00000510| 0e 73 36 2d 32 2d 35 0e | 45 76 61 6c 75 61 74 69 |.s6-2-5.|Evaluati|
|00000520| 6e 67 20 54 72 69 67 6f | 6e 6f 6d 65 74 72 69 63 |ng Trigo|nometric|
|00000530| 20 46 75 6e 63 74 69 6f | 6e 73 20 6f 6e 20 61 20 | Functio|ns on a |
|00000540| 43 61 6c 63 75 6c 61 74 | 6f 72 0f 0d 0a 00 10 36 |Calculat|or.....6|
|00000550| 2d 33 2d 31 0e 73 36 2d | 33 2d 35 0e 45 76 65 6e |-3-1.s6-|3-5.Even|
|00000560| 20 54 72 69 67 6f 6e 6f | 6d 65 74 72 69 63 20 46 | Trigono|metric F|
|00000570| 75 6e 63 74 69 6f 6e 73 | 0f 0d 0a 00 10 36 2d 37 |unctions|.....6-7|
|00000580| 2d 31 0e 73 36 2d 37 2d | 33 0e 46 72 65 71 75 65 |-1.s6-7-|3.Freque|
|00000590| 6e 63 79 20 6f 66 20 53 | 69 6d 70 6c 65 20 48 61 |ncy of S|imple Ha|
|000005a0| 72 6d 6f 6e 69 63 20 4d | 6f 74 69 6f 6e 0f 0d 0a |rmonic M|otion...|
|000005b0| 00 10 36 2d 32 2d 31 0e | 73 36 2d 32 2d 34 0e 46 |..6-2-1.|s6-2-4.F|
|000005c0| 75 6e 64 61 6d 65 6e 74 | 61 6c 20 54 72 69 67 6f |undament|al Trigo|
|000005d0| 6e 6f 6d 65 74 72 69 63 | 20 49 64 65 6e 74 69 74 |nometric| Identit|
|000005e0| 69 65 73 0f 0d 0a 00 10 | 36 2d 35 2d 31 0e 73 36 |ies.....|6-5-1.s6|
|000005f0| 2d 35 2d 32 0e 47 72 61 | 70 68 20 6f 66 20 43 6f |-5-2.Gra|ph of Co|
|00000600| 73 65 63 61 6e 74 0f 0d | 0a 00 10 36 2d 34 2d 31 |secant..|...6-4-1|
|00000610| 0e 73 36 2d 34 2d 32 0e | 47 72 61 70 68 20 6f 66 |.s6-4-2.|Graph of|
|00000620| 20 43 6f 73 69 6e 65 0f | 0d 0a 00 10 36 2d 35 2d | Cosine.|....6-5-|
|00000630| 31 0e 73 36 2d 35 2d 34 | 0e 47 72 61 70 68 20 6f |1.s6-5-4|.Graph o|
|00000640| 66 20 43 6f 74 61 6e 67 | 65 6e 74 0f 0d 0a 00 10 |f Cotang|ent.....|
|00000650| 36 2d 35 2d 31 0e 73 36 | 2d 35 2d 33 0e 47 72 61 |6-5-1.s6|-5-3.Gra|
|00000660| 70 68 20 6f 66 20 53 65 | 63 61 6e 74 0f 0d 0a 00 |ph of Se|cant....|
|00000670| 10 36 2d 34 2d 31 0e 73 | 36 2d 34 2d 31 0e 47 72 |.6-4-1.s|6-4-1.Gr|
|00000680| 61 70 68 20 6f 66 20 53 | 69 6e 65 0f 0d 0a 00 10 |aph of S|ine.....|
|00000690| 36 2d 35 2d 31 0e 73 36 | 2d 35 2d 31 0e 47 72 61 |6-5-1.s6|-5-1.Gra|
|000006a0| 70 68 20 6f 66 20 54 61 | 6e 67 65 6e 74 0f 0d 0a |ph of Ta|ngent...|
|000006b0| 00 10 36 2d 34 2d 31 0e | 73 36 2d 34 2d 34 0e 48 |..6-4-1.|s6-4-4.H|
|000006c0| 6f 72 69 7a 6f 6e 74 61 | 6c 20 53 68 72 69 6e 6b |orizonta|l Shrink|
|000006d0| 69 6e 67 0f 0d 0a 00 10 | 36 2d 34 2d 31 0e 73 36 |ing.....|6-4-1.s6|
|000006e0| 2d 34 2d 34 0e 48 6f 72 | 69 7a 6f 6e 74 61 6c 20 |-4-4.Hor|izontal |
|000006f0| 53 74 72 65 74 63 68 69 | 6e 67 0f 0d 0a 00 10 36 |Stretchi|ng.....6|
|00000700| 2d 32 2d 31 0e 73 36 2d | 32 2d 31 0e 48 79 70 6f |-2-1.s6-|2-1.Hypo|
|00000710| 74 65 6e 75 73 65 0f 0d | 0a 00 10 36 2d 31 2d 31 |tenuse..|...6-1-1|
|00000720| 0e 73 36 2d 31 2d 31 0e | 49 6e 69 74 69 61 6c 20 |.s6-1-1.|Initial |
|00000730| 53 69 64 65 20 6f 66 20 | 61 6e 20 41 6e 67 6c 65 |Side of |an Angle|
|00000740| 0f 0d 0a 00 10 36 2d 36 | 2d 31 0e 73 36 2d 36 2d |.....6-6|-1.s6-6-|
|00000750| 32 0e 49 6e 76 65 72 73 | 65 20 43 6f 73 69 6e 65 |2.Invers|e Cosine|
|00000760| 20 46 75 6e 63 74 69 6f | 6e 0f 0d 0a 00 10 36 2d | Functio|n.....6-|
|00000770| 36 2d 31 0e 73 36 2d 36 | 2d 31 0e 49 6e 76 65 72 |6-1.s6-6|-1.Inver|
|00000780| 73 65 20 53 69 6e 65 20 | 46 75 6e 63 74 69 6f 6e |se Sine |Function|
|00000790| 0f 0d 0a 00 10 36 2d 36 | 2d 31 0e 73 36 2d 36 2d |.....6-6|-1.s6-6-|
|000007a0| 33 0e 49 6e 76 65 72 73 | 65 20 54 61 6e 67 65 6e |3.Invers|e Tangen|
|000007b0| 74 20 46 75 6e 63 74 69 | 6f 6e 0f 0d 0a 00 10 36 |t Functi|on.....6|
|000007c0| 2d 36 2d 31 0e 73 36 2d | 36 2d 34 0e 49 6e 76 65 |-6-1.s6-|6-4.Inve|
|000007d0| 72 73 65 20 50 72 6f 70 | 65 72 74 69 65 73 0f 0d |rse Prop|erties..|
|000007e0| 0a 00 10 36 2d 34 2d 31 | 0e 73 36 2d 34 2d 36 0e |...6-4-1|.s6-4-6.|
|000007f0| 4c 65 66 74 20 53 68 69 | 66 74 0f 0d 0a 00 10 36 |Left Shi|ft.....6|
|00000800| 2d 31 2d 31 0e 73 36 2d | 31 2d 32 0e 4d 65 61 73 |-1-1.s6-|1-2.Meas|
|00000810| 75 72 65 20 6f 66 20 61 | 6e 20 41 6e 67 6c 65 0f |ure of a|n Angle.|
|00000820| 0d 0a 00 10 36 2d 31 2d | 31 0e 73 36 2d 31 2d 32 |....6-1-|1.s6-1-2|
|00000830| 0e 4d 69 6e 75 74 65 73 | 0f 0d 0a 00 10 36 2d 31 |.Minutes|.....6-1|
|00000840| 2d 31 0e 73 36 2d 31 2d | 31 0e 4e 65 67 61 74 69 |-1.s6-1-|1.Negati|
|00000850| 76 65 20 41 6e 67 6c 65 | 73 0f 0d 0a 00 10 36 2d |ve Angle|s.....6-|
|00000860| 31 2d 31 0e 73 36 2d 31 | 2d 33 0e 4f 62 74 75 73 |1-1.s6-1|-3.Obtus|
|00000870| 65 20 41 6e 67 6c 65 0f | 0d 0a 00 10 36 2d 33 2d |e Angle.|....6-3-|
|00000880| 31 0e 73 36 2d 33 2d 35 | 0e 4f 64 64 20 54 72 69 |1.s6-3-5|.Odd Tri|
|00000890| 67 6f 6e 6f 6d 65 74 72 | 69 63 20 46 75 6e 63 74 |gonometr|ic Funct|
|000008a0| 69 6f 6e 73 0f 0d 0a 00 | 10 36 2d 32 2d 31 0e 73 |ions....|.6-2-1.s|
|000008b0| 36 2d 32 2d 31 0e 4f 70 | 70 6f 73 69 74 65 20 53 |6-2-1.Op|posite S|
|000008c0| 69 64 65 0f 0d 0a 00 10 | 36 2d 33 2d 31 0e 73 36 |ide.....|6-3-1.s6|
|000008d0| 2d 33 2d 34 0e 50 65 72 | 69 6f 64 20 6f 66 20 61 |-3-4.Per|iod of a|
|000008e0| 20 46 75 6e 63 74 69 6f | 6e 0f 0d 0a 00 10 36 2d | Functio|n.....6-|
|000008f0| 37 2d 31 0e 73 36 2d 37 | 2d 33 0e 50 65 72 69 6f |7-1.s6-7|-3.Perio|
|00000900| 64 20 6f 66 20 53 69 6d | 70 6c 65 20 48 61 72 6d |d of Sim|ple Harm|
|00000910| 6f 6e 69 63 20 4d 6f 74 | 69 6f 6e 0f 0d 0a 00 10 |onic Mot|ion.....|
|00000920| 36 2d 34 2d 31 0e 73 36 | 2d 34 2d 34 0e 50 65 72 |6-4-1.s6|-4-4.Per|
|00000930| 69 6f 64 20 6f 66 20 53 | 69 6e 65 20 61 6e 64 20 |iod of S|ine and |
|00000940| 43 6f 73 69 6e 65 0f 0d | 0a 00 10 36 2d 33 2d 31 |Cosine..|...6-3-1|
|00000950| 0e 73 36 2d 33 2d 34 0e | 50 65 72 69 6f 64 69 63 |.s6-3-4.|Periodic|
|00000960| 20 46 75 6e 63 74 69 6f | 6e 0f 0d 0a 00 10 36 2d | Functio|n.....6-|
|00000970| 34 2d 31 0e 73 36 2d 34 | 2d 35 0e 50 68 61 73 65 |4-1.s6-4|-5.Phase|
|00000980| 20 53 68 69 66 74 0f 0d | 0a 00 10 36 2d 31 2d 31 | Shift..|...6-1-1|
|00000990| 0e 73 36 2d 31 2d 31 0e | 50 6f 73 69 74 69 76 65 |.s6-1-1.|Positive|
|000009a0| 20 41 6e 67 6c 65 73 0f | 0d 0a 00 10 36 2d 32 2d | Angles.|....6-2-|
|000009b0| 31 0e 73 36 2d 32 2d 34 | 0e 50 79 74 68 61 67 6f |1.s6-2-4|.Pythago|
|000009c0| 72 65 61 6e 20 49 64 65 | 6e 74 69 74 69 65 73 0f |rean Ide|ntities.|
|000009d0| 0d 0a 00 10 36 2d 32 2d | 31 0e 73 36 2d 32 2d 34 |....6-2-|1.s6-2-4|
|000009e0| 0e 51 75 6f 74 69 65 6e | 74 20 49 64 65 6e 74 69 |.Quotien|t Identi|
|000009f0| 74 69 65 73 0f 0d 0a 00 | 10 36 2d 31 2d 31 0e 73 |ties....|.6-1-1.s|
|00000a00| 36 2d 31 2d 35 0e 52 61 | 64 69 61 6e 20 4d 65 61 |6-1-5.Ra|dian Mea|
|00000a10| 73 75 72 65 0f 0d 0a 00 | 10 36 2d 31 2d 31 0e 73 |sure....|.6-1-1.s|
|00000a20| 36 2d 31 2d 35 0e 52 61 | 64 69 61 6e 0f 0d 0a 00 |6-1-5.Ra|dian....|
|00000a30| 10 36 2d 31 2d 31 0e 73 | 36 2d 31 2d 36 0e 52 61 |.6-1-1.s|6-1-6.Ra|
|00000a40| 64 69 61 6e 2d 74 6f 2d | 44 65 67 72 65 65 20 43 |dian-to-|Degree C|
|00000a50| 6f 6e 76 65 72 73 69 6f | 6e 0f 0d 0a 00 10 36 2d |onversio|n.....6-|
|00000a60| 32 2d 31 0e 73 36 2d 32 | 2d 34 0e 52 65 63 69 70 |2-1.s6-2|-4.Recip|
|00000a70| 72 6f 63 61 6c 20 49 64 | 65 6e 74 69 74 69 65 73 |rocal Id|entities|
|00000a80| 0f 0d 0a 00 10 36 2d 33 | 2d 31 0e 73 36 2d 33 2d |.....6-3|-1.s6-3-|
|00000a90| 32 0e 52 65 66 65 72 65 | 6e 63 65 20 41 6e 67 6c |2.Refere|nce Angl|
|00000aa0| 65 0f 0d 0a 00 10 36 2d | 34 2d 31 0e 73 36 2d 34 |e.....6-|4-1.s6-4|
|00000ab0| 2d 33 0e 52 65 66 6c 65 | 63 74 69 6f 6e 20 6f 66 |-3.Refle|ction of|
|00000ac0| 20 61 20 47 72 61 70 68 | 0f 0d 0a 00 10 36 2d 31 | a Graph|.....6-1|
|00000ad0| 2d 31 0e 73 36 2d 31 2d | 33 0e 52 69 67 68 74 20 |-1.s6-1-|3.Right |
|00000ae0| 41 6e 67 6c 65 0f 0d 0a | 00 10 36 2d 34 2d 31 0e |Angle...|..6-4-1.|
|00000af0| 73 36 2d 34 2d 36 0e 52 | 69 67 68 74 20 53 68 69 |s6-4-6.R|ight Shi|
|00000b00| 66 74 0f 0d 0a 00 10 36 | 2d 32 2d 31 0e 73 36 2d |ft.....6|-2-1.s6-|
|00000b10| 32 2d 32 0e 52 69 67 68 | 74 20 54 72 69 61 6e 67 |2-2.Righ|t Triang|
|00000b20| 6c 65 20 44 65 66 69 6e | 69 74 69 6f 6e 20 6f 66 |le Defin|ition of|
|00000b30| 20 54 72 69 67 6f 6e 6f | 6d 65 74 72 69 63 20 46 | Trigono|metric F|
|00000b40| 75 6e 63 74 69 6f 6e 73 | 0f 0d 0a 00 10 36 2d 33 |unctions|.....6-3|
|00000b50| 2d 31 0e 73 36 2d 33 2d | 31 0e 53 65 63 61 6e 74 |-1.s6-3-|1.Secant|
|00000b60| 20 6f 66 20 41 6e 79 20 | 41 6e 67 6c 65 0f 0d 0a | of Any |Angle...|
|00000b70| 00 10 36 2d 32 2d 31 0e | 73 36 2d 32 2d 32 0e 53 |..6-2-1.|s6-2-2.S|
|00000b80| 65 63 61 6e 74 2c 20 52 | 69 67 68 74 20 54 72 69 |ecant, R|ight Tri|
|00000b90| 61 6e 67 6c 65 20 44 65 | 66 69 6e 69 74 69 6f 6e |angle De|finition|
|00000ba0| 20 6f 66 0f 0d 0a 00 10 | 36 2d 31 2d 31 0e 73 36 | of.....|6-1-1.s6|
|00000bb0| 2d 31 2d 32 0e 53 65 63 | 6f 6e 64 73 0f 0d 0a 00 |-1-2.Sec|onds....|
|00000bc0| 10 36 2d 37 2d 31 0e 73 | 36 2d 37 2d 33 0e 53 69 |.6-7-1.s|6-7-3.Si|
|00000bd0| 6d 70 6c 65 20 48 61 72 | 6d 6f 6e 69 63 20 4d 6f |mple Har|monic Mo|
|00000be0| 74 69 6f 6e 0f 0d 0a 00 | 10 36 2d 33 2d 31 0e 73 |tion....|.6-3-1.s|
|00000bf0| 36 2d 33 2d 31 0e 53 69 | 6e 65 20 6f 66 20 41 6e |6-3-1.Si|ne of An|
|00000c00| 79 20 41 6e 67 6c 65 0f | 0d 0a 00 10 36 2d 32 2d |y Angle.|....6-2-|
|00000c10| 31 0e 73 36 2d 32 2d 32 | 0e 53 69 6e 65 2c 20 52 |1.s6-2-2|.Sine, R|
|00000c20| 69 67 68 74 20 54 72 69 | 61 6e 67 6c 65 20 44 65 |ight Tri|angle De|
|00000c30| 66 69 6e 69 74 69 6f 6e | 20 6f 66 0f 0d 0a 00 10 |finition| of.....|
|00000c40| 36 2d 32 2d 31 0e 73 36 | 2d 32 2d 33 0e 53 69 6e |6-2-1.s6|-2-3.Sin|
|00000c50| 65 2c 20 43 6f 73 69 6e | 65 2c 20 61 6e 64 20 54 |e, Cosin|e, and T|
|00000c60| 61 6e 67 65 6e 74 20 6f | 66 20 53 70 65 63 69 61 |angent o|f Specia|
|00000c70| 6c 20 41 6e 67 6c 65 73 | 0f 0d 0a 00 10 36 2d 34 |l Angles|.....6-4|
|00000c80| 2d 31 0e 73 36 2d 34 2d | 31 0e 53 69 6e 65 20 43 |-1.s6-4-|1.Sine C|
|00000c90| 75 72 76 65 0f 0d 0a 00 | 10 36 2d 32 2d 31 0e 73 |urve....|.6-2-1.s|
|00000ca0| 36 2d 32 2d 36 0e 53 6f | 6c 76 69 6e 67 20 52 69 |6-2-6.So|lving Ri|
|00000cb0| 67 68 74 20 54 72 69 61 | 6e 67 6c 65 73 0f 0d 0a |ght Tria|ngles...|
|00000cc0| 00 10 36 2d 31 2d 31 0e | 73 36 2d 31 2d 37 0e 53 |..6-1-1.|s6-1-7.S|
|00000cd0| 70 65 65 64 0f 0d 0a 00 | 10 36 2d 31 2d 31 0e 73 |peed....|.6-1-1.s|
|00000ce0| 36 2d 31 2d 31 0e 53 74 | 61 6e 64 61 72 64 20 50 |6-1-1.St|andard P|
|00000cf0| 6f 73 69 74 69 6f 6e 20 | 6f 66 20 61 6e 20 41 6e |osition |of an An|
|00000d00| 67 6c 65 0f 0d 0a 00 10 | 36 2d 31 2d 31 0e 73 36 |gle.....|6-1-1.s6|
|00000d10| 2d 31 2d 33 0e 53 74 72 | 61 69 67 68 74 20 41 6e |-1-3.Str|aight An|
|00000d20| 67 6c 65 0f 0d 0a 00 10 | 36 2d 31 2d 31 0e 73 36 |gle.....|6-1-1.s6|
|00000d30| 2d 31 2d 34 0e 53 75 70 | 70 6c 65 6d 65 6e 74 61 |-1-4.Sup|plementa|
|00000d40| 72 79 20 41 6e 67 6c 65 | 73 0f 0d 0a 00 10 36 2d |ry Angle|s.....6-|
|00000d50| 33 2d 31 0e 73 36 2d 33 | 2d 31 0e 54 61 6e 67 65 |3-1.s6-3|-1.Tange|
|00000d60| 6e 74 20 6f 66 20 41 6e | 79 20 41 6e 67 6c 65 0f |nt of An|y Angle.|
|00000d70| 0d 0a 00 10 36 2d 32 2d | 31 0e 73 36 2d 32 2d 32 |....6-2-|1.s6-2-2|
|00000d80| 0e 54 61 6e 67 65 6e 74 | 2c 20 52 69 67 68 74 20 |.Tangent|, Right |
|00000d90| 54 72 69 61 6e 67 6c 65 | 20 44 65 66 69 6e 69 74 |Triangle| Definit|
|00000da0| 69 6f 6e 20 6f 66 0f 0d | 0a 00 10 36 2d 31 2d 31 |ion of..|...6-1-1|
|00000db0| 0e 73 36 2d 31 2d 31 0e | 54 65 72 6d 69 6e 61 6c |.s6-1-1.|Terminal|
|00000dc0| 20 53 69 64 65 20 6f 66 | 20 61 6e 20 41 6e 67 6c | Side of| an Angl|
|00000dd0| 65 0f 0d 0a 00 10 36 2d | 32 2d 31 0e 73 36 2d 32 |e.....6-|2-1.s6-2|
|00000de0| 2d 31 0e 54 68 65 20 53 | 69 78 20 54 72 69 67 6f |-1.The S|ix Trigo|
|00000df0| 6e 6f 6d 65 74 72 69 63 | 20 46 75 6e 63 74 69 6f |nometric| Functio|
|00000e00| 6e 73 0f 0d 0a 00 10 36 | 2d 33 2d 31 0e 73 36 2d |ns.....6|-3-1.s6-|
|00000e10| 33 2d 31 0e 54 72 69 67 | 6f 6e 6f 6d 65 74 72 69 |3-1.Trig|onometri|
|00000e20| 63 20 46 75 6e 63 74 69 | 6f 6e 73 20 6f 66 20 41 |c Functi|ons of A|
|00000e30| 6e 79 20 41 6e 67 6c 65 | 0f 0d 0a 00 10 36 2d 31 |ny Angle|.....6-1|
|00000e40| 2d 31 0e 73 36 2d 31 2d | 31 0e 56 65 72 74 65 78 |-1.s6-1-|1.Vertex|
|00000e50| 20 6f 66 20 61 6e 20 41 | 6e 67 6c 65 0f 0d 0a 00 | of an A|ngle....|
|00000e60| 0d 0b 00 26 00 00 00 3d | 0e 00 00 4d 16 00 00 10 |...&...=|...M....|
|00000e70| 00 00 00 00 00 00 00 4d | 41 49 4e 00 |.......M|AIN. |
+--------+-------------------------+-------------------------+--------+--------+